The Modular Arithmetic Calculator offers a streamlined approach to performing arithmetic operations modulo N. By allowing users to select a fixed modulus, it alleviates the need to repeatedly engage a "mod" button during calculations. This calculator is characterized by several key features:
- Adherence to conventional order of operations;
- Support for arbitrarily large integers;
- Efficient execution of modular division and exponentiation;
- Capability to display a complete transcript of calculations.
Modular arithmetic, fundamentally understood as a "calculus of remainders," is integral across various fields of mathematics and computer science, with notable applications in cryptography, coding systems for barcodes, and even in music theory.
The core principle involves selecting a modulus N and thereby reducing each number to one of the integers in the range 0 to N−1 based on the remainder obtained from division by N. For illustrative purposes, consider a modulus of 17:
40 ≡ 6 (since dividing 40 by 17 yields a remainder of 6);
17 ≡ 0 (since dividing 17 by 17 results in no remainder).
The calculator respects these modular rules in arithmetic operations as well. Continuing with the modulus of 17:
15 + 7 ≡ 5 (since 22 reduces to 5);
3 × 9 ≡ 10 (as 27 reduces to 10);
5 ^ 3 ≡ 6 (because 125 reduces to 6).
Subtraction and division are also consistent with this modular framework:
−1 ≡ 16 (as 16 + 1 = 17 ≡ 0);
1/2 ≡ 9 (since 9 × 2 = 18 ≡ 1);
4 - 7 ≡ 14 (since 14 + 7 = 21 ≡ 4);
7 ÷ 3 = 8 (as 8 × 3 = 24 ≡ 7).
The concept excludes negative numbers and fractions; such cases are also reduced to one of the integers from the set {0,1,...,N−1}. Division by zero is prohibited, as is division when the divisor shares common factors with the modulus. When employing a modulus of 10, errors arise in the following operations:
- 3 ÷ 20 (as 20 ≡ 0);
- 7 ÷ 8 (because 8 and 10 share a common factor of 2).
The calculator accommodates integers of any size. For example, setting the modulus to a Mersenne prime, specifically 2305843009213693951, illustrates that:
5 ^ 2305843009213693950 ≡ 1, as per Fermat's little theorem.
The underlying code is meticulously designed and verified through an extensive suite of no fewer than 186 automated tests.
This application further enhances user experience by supporting external keyboards, Siri Shortcuts, as well as multitasking features on iPad such as Slide Over, Split View, and multiple windows.
Tổng quan
Modular Arithmetic là một Commercial phần mềm trong danh mục Giáo dục được phát triển bởi Benjamin Burton.
Phiên bản mới nhất của Modular Arithmetic là 4.1, phát hành vào ngày 25/12/2024. Vào lúc đầu, nó đã được thêm vào cơ sở dữ liệu của chúng tôi trên 25/12/2024.
Modular Arithmetic đã chạy trên hệ điều hành sau: iOS.
Người sử dụng của Modular Arithmetic đánh giá xếp hạng 5 trong số 5 sao.
08/01/2025 | Assassin's Creed Origins 159.2.0.11504 |
08/01/2025 | Vov Sticky Notes 9.3 |
08/01/2025 | VIA Plattform-Geräte-Manager 1.44 |
08/01/2025 | Avira Secure Browser 131.0.27760.140 |
08/01/2025 | NVIDIA RTX Desktop Manager 205.22 |
App Store
với phần mềm UpdateStar miễn phí.
Đánh giá mới nhất
User Experience Improvement Program Service
Nâng cao trải nghiệm người dùng của bạn với dịch vụ chương trình cải tiến của Acer |
|
Microsoft SQL Server Compact x64 ENU
SQL Server Compact hiệu quả cho hệ thống x64 |
|
App Explorer
Khám phá thế giới ứng dụng với App Explorer của SweetLabs. |
|
HP System Event Utility
HP System Event Utility: Hợp lý hóa việc quản lý sự kiện hệ thống |
|
utools
Tăng năng suất của bạn với uTools! |
|
Canon G2000 series MP Drivers
Trình điều khiển máy in hiệu quả cho Canon G2000 Series |